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1. INTRODUCTION

The Support Vector Machine (SVM) is a relatively recent approach introduced by Boser, Guyon, and Vapnik
(Boser et al., 1992), (Vapnik, 1995) for solving supervised classi�cation and regression problems, or more
colloquially learning from examples. In the following we will discuss only classi�cation and its application
to hyperspectral data from AVIRIS.

Traditionally, classi�ers model the underlying density of the various classes and then �nd a separating
surface. However density estimation in high-dimensional spaces su�ers from the Hughes e�ect (Hughes,
1968), (Landgrebe, 1999): For a �xed amount of training data the classi�cation accuracy as a function of
number of bands reaches a maximum and then declines, because there is limited amount of training data to
estimate the large number of parameters needed. Thus usually, a feature selection step is �rst performed on
the high-dimensional data to reduce its dimensionality.

As we will demonstrate, the SVM approach does not su�er this limitation and uses the full dimensionality
of the hyperspectral data. Support Vector Machines directly seek a separating surface through an optimiza-
tion procedure that �nds the exemplars that form the boundaries of the classes. These exemplars are called
the support vectors. This is signi�cant because it is usually the case that there are a small subset of all the
training data that are involved in de�ning the separating surface, i.e., those examples that are closest to the
separating surface.

In addition, the Support Vector Machine approach uses the kernel method, discussed below, to map the
data with a non-linear transformation to a higher dimensional space and in that space attempts to �nd a
linear separating surface between the two classes. The transformation to a higher dimensional space tends
to spread the data out in a way that facilitates the �nding of a linear separating surface. In this way the
separating surfaces that would be non-linear (not a hyperplane) in the original data space can become linear
(a hyperplane) in the higher dimensional space. Instead of being penalized by the curse of dimensionality and
its attendant Hughes e�ect, the Support Vector Machine can use the full dimensionality of the hyperspectral
data without the feature selection preprocessing step. Why the curse of dimensionality is not a problem for
the kernel method is discussed below.

A number of useful introductions are available in publications and on the world wide web (Burges, 1998),
(Gunn, 1997), (Support-Vector-Machines, 1999). In what follows we will �rst focus on binary classi�cation
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Figure 1. A. Schematic for separable data in R2. B. Schematic for non-separable data. in R2. The circles
are feature vectors in class +1 and the diamonds are feature vectors in class �1. There is one feature vector
that is not separable in the non-separable case.

{ in the class or not in the class. Subsequently we will handle multiple classes by building separate classi�er
for each pair of classes and follow this with a voting strategy to choose the class label.

The plan for the paper is to give an overview of the mathematical formulation for binary classi�cation.
Then we introduce the optimal margin hyperplane, the transformation of its resulting optimization problem
by means of Lagrange multipliers, and its solution. This is done for both the separable and non-separable
cases. We then discuss the kernel method and the generalization to multiple classes. Following this, a section
is devoted to describing the hyperspectral data we have used for demonstrating the classi�er. Then we discuss
implementation details and present the results. The conclusion summarizes the results and suggests further
development of the method.

2. MATHEMATICAL FORMULATION

In the following we will highlight the mathematical formulation. More complete details can be found in
a recent publication of Gualtieri and Cromp. (Gualtieri & Cromp, 1998).

2.1. Classi�cation

For classi�cation, a set of examples consisting of pairs of class labels and feature vectors is known, and you
desire to �nd a classi�er function that gives correct answers on these examples and has low generalization
error, meaning it gives good results for the class labels when applied to feature vector inputs it has not
seen before. We are given l training pairs, (yi;xi) i = 1; : : : l, consisting of class labels, yi 2 f1;�1g, and
n-dimensional feature vectors, xi 2 Rn. We wish to �nd a function f( ;�) : x 7! y that represents the
classi�er y = f(x;�), where � are all the parameters of the classi�er.

2.2. Optimal Margin Method for Separable Data

Vapnik and Chervonenkis (Vapnik & Chervonenkis, 1974), and Vapnik (Vapnik, 1982) originated the optimal
margin method for separable data. With reference to Fig. 1A. the problem is how to place a hyperplane
such that: (1) All data belonging to class +1 lies on one side of the hyperplane and all data belonging to
class -1 lies on the other side. (2) The hyperplane is placed so that the distance of the closest vectors in
both classes to the hyperplane, called the margin, is the largest it can be. The hyperplane is de�ned by the
equation w � x + b = 0; where x is a point on the hyperplane, w is the n-dimensional vector perpendicular
to the hyperplane, and b is the distance of the closest point on the hyperplane to the origin. The classi�er
is then f(x;w; b) = sgn(w � x+ b). These requirements can be shown to lead to an optimization problem:

min

w; b

1

2
jwj2; yi(w � xi + b)� 1 � 0 i = 1; : : : ; l: (1)
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2.3. The Dual Optimization Problem for Separable Data

The quadratic optimization problem in Eq. (1) can be simpli�ed so as to replace the inequalities with
a simpler form by transforming the problem to a dual space representation using Lagrangian multipliers.
We absorb the constraints into the minimization problem by de�ning Lagrange undetermined multipliers.
�i � 0 i = 1; : : : l, which multiply the constraints and are subtracted from the original minimization

function giving a new quantity to be optimized: L(w; b; �1; : : : ; �l) =
jwj2

2
�
Pl

i=1 �i [yi(w �xi+ b)�1]: This
gives the dual optimization problem,

max

�1 : : : �l

min

w; b
L(w; b; �1; : : : ; �l); �i � 0 i = 1; : : : ; l; yi(w � xi + b)� 1 � 0 i = 1; : : : ; l: (2)

Assuming that L is a di�erentiable function of w; b, we then have after performing partial derivatives, the
conditions for a minimum, w =

Pl

i=1 �iyixi;
Pl

i=1 �iyi = 0, which when substituted in Eq. (2) allows us
to eliminate w and b and to obtain an equivalent quadratic optimization problem. This is called the dual

problem optimization and it has simpli�ed constraints:

max

�1 : : : �l

2
4�1

2

lX
i=1

lX
j=1

�iyi(xi � xj)yj�j +
lX

i=1

�i

3
5 ; �i � 0 i = 1; : : : ; l;

lX
i=1

�iyi = 0: (3)

In the process of obtaining a solution, we expect that some of the �i will be 0, and the remaining ones will
be associated with the support vectors. From the solution for the �i we obtain w, from w =

Pl

i=1 �iyixi,
and b from Eq. (2). What is often found is that the number of support vectors (vectors for which �i > 0) is
not dependent on the dimensionality, n, of the vectors, but re
ects an intrinsic dimension for classi�cation
in the space of the training vectors. This is at the root of why the curse of dimensionality is not a problem in
this method. Methods of solving the optimization problem are taken up in the section on implementation.

2.4. Non-separable Data

Cortes and Vapnik generalized the optimal margin methods to non-separable data (Cortes, 1995), (Cortes
& Vapnik, 1995) which we discuss next. With reference to Fig. 1B the problem is now that there is no way
to place a hyperplane such that we can separate the training data into two classes.

Cortes and Vapnik (Cortes, 1995), (Cortes & Vapnik, 1995) gave the following solution and named it
the soft margin classi�er. They relaxed the restriction that every training vector of a given class lie on the
same side of the optimal hyperplane, by introducing a penalty whose cost is controlled by a parameter C.
The limit C ! 1 means the optimization reduces to the formulation for the separable case, and the limit
C ! 0 means no extra cost if a training vector lies on the opposite side of the separating hyperplane. Using a
generalization of the optimization formulation given above and again transforming to the dual representation
using Lagrange undetermined multipliers we obtain,

max

�1 : : : �l

2
4�1

2

lX
i=1

lX
j=1

�iyi(xi � xj)yj�j +
lX

i=1

�i

3
5 ; C � �i � 0 i = 1; : : : ; l;

lX
i=1

�iyi = 0 i = 1; : : : ; l

(4)

Note the only di�erence from the dual of the separable case, Eq. (3), is that �i are bounded above by C.
Knowing the solutions �i, we can �nd w for the hyperplane as above and similarly b can be found using one
or more of the equations (not given here) that come from the using the dual formulation.
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2.5. Kernel Method

Up to this point we have only dealt with classi�cation as a linear function of the training data { the decision
surface is a hyperplane de�ned by linear equations on the training data. However, it can be the case that no
hyperplane exists to separate the data. The non-separable method provides one way to deal with this. As
an alternative we would like a way to build a non-linear decision surface. An extremely useful generalization
which can give non-linear decision surfaces and improved separation of the training data is possible using
the following idea, �rst introduced by Aizerman, Braverman and Rozoner (Aizerman et al., 1964), and
incorporated into machine learning as part of the Support Vector Machine by Boser, Guyon, and Vapnik
(Boser et al., 1992).

Note the way that the training data enters the optimization problems, Eqs. (3), (4), is as dot products.
Suppose that we map the feature vectors, x 2 Rn into a higher dimensional Euclidean space, H, by means
of a non-linear vector function � : Rn 7! H. Then we may again pose the optimal margin problem in the
space H by replacing xi � xj, by �(xi) ��(xj). Then, as before, solve the optimization problem for the �i.
This �nds the support vectors among the transformed vectors, �(xi), by association with the �i > 0. We
then use these to build the classi�er function:

f(x; �1; : : : ; �l) = sgn

 
lX

i=1

�iyi�(xi) ��(x) + b

!
: (5)

Now suppose there exists a kernel function K such that K(xi;xj) = �(xi) � �(xj); then everywhere
xi � xj occurred, we could replace it with K(xi;xj). We need not explicitly compute �(x), which could be
computationally expensive, but only need compute the kernel functions. In fact we need not have an explicit
representation of � at all, but only K. The restrictions on what functions can qualify as kernel functions is
discussed in Burges (Burges, 1998). What is gained is that we have moved the data into a larger space where
the training data may be spread further apart and a larger margin may be found for the optimal hyperplane.
In the cases where we can explicitly �nd �, then we can use the inverse of � to construct the non-linear
separator in the original space. Clearly there is a lot of freedom in choosing the kernel function and recent
work has gone into the study of this idea both for SVM and for other problems (Smola et al., 1998). With
respect to the curse of dimensionality, we never explicitly work in the higher dimensional space, so we are
never confronted with computing the large number of vector components in that space.

For the results presented below, we have used the inhomogeneous polynomial kernel function

K(x;y) = (x � y + 1)d; (6)

with d = 7, though we found little di�erence in our results for d = 2; : : : ; 6 (See Fig. 2B). The choice of the
inhomogeneous polynomial kernel is based on other workers success using this kernel function in solving the
handwritten digit problem (Boser et al., 1992). In fact, there are principled ways to choose among kernel
functions and to choose the parameters of the kernel function. Vapnik (Vapnik, 1995), (Vapnik, 1998) has
pioneered a body of results from probability theory that provide a principled way to approach these questions
in the context of the Support Vector Machine.

2.6. Multi-Class Classi�ers

Two simple ways to generalize a binary classi�er to a classi�er forK classes are: (1) TrainK binary classi�ers,
each one using training data from one of the K classes and training data from all the remainingK�1 classes.
Apply all K classi�er to each vector of the test data, and select the label of the classi�er with the largest
margin { the value of the argument of the sgn function in Eq. (5). (2.) Train K(K � 1)=2 binary classi�ers
on all pairs of training data. Apply all K(K � 1)=2 binary classi�ers to each vector of the test data and
for each outcome give one vote to the winning class. Select the label of the class with the most votes. For
a tie, apply a tie breaking strategy. We chose the second approach, and though it requires building more
classi�ers, it keeps the size of the training data smaller and is faster for training.
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3. HYPERSPECTRAL DATA

In this work, hyperspectral data was obtained from the AVIRIS imaging spectrometer for two scenes: (1)
Indian Pines 92 from Northern Indiana on June 12, 1992 taken on a NASA ER2 
ight at high altitude with
a ground pixel size of 17m resolution; (2) Salinas 98 taken in the Salinas Valley, California on October 9,
1998 from a NOAA Twin Otter 
ight at low altitude with a pixel size of 3:7m.

3.1. Indian Pines 1992 Data

The Indian Pines data consists of 145� 145 pixels by 220 bands of re
ectance data with about two-thirds
agriculture, and one-third forest or other natural perennial vegetation. There are two major dual lane
highways, a rail line, as well as some low density housing, other built structures, and smaller roads. Since
the scene is taken in June some of the crops present, corn, soybeans, are in early stages of growth with
less than 5% coverage. The ground truth available is designated into sixteen classes and is not all mutually
exclusive. The data and the ground truth are available from D. Landgrebe (Landgrebe, 1992), (Landgrebe,
1998). This scene has been recently studied by S. Tadjudin and D. Landgrebe (Tadjudin & Landgrebe,
1998a), (Tadjudin & Landgrebe, 1998b) and allows us a comparison to their classi�er. Following their
work we have looked at: (1) A part of the 145 � 145 scene, called the subset scene, consisting of pixels
[27 � 94]� [31 � 116] for a size of 68 � 86. [Upper left in the original scene is at (1; 1)]. There is ground
truth for over 75% of this scene and it is comprised of the three row crops, Corn-notill, Soybean-notill,
Soybean-mintill, and Grass-Trees. (2) The full 145� 145 scene for which there is ground truth covering 49%
of the scene and it is divided among 16 classes ranging in size from 20 pixels to 2468 pixels.

Following Tadjudin and Landgrebe's work, we have also reduced the number of bands to 200 by removing
bands covering the region of water absorption: [104� 108]; [150� 163]; 220.

3.2. Salinas 1998 Data

This scene, just south of the city of Green�eld in the Salinas Valley in California, was acquired on October 9,
1998 (Johnson, 1998). This data was available only as at-sensor radiance data. It includes vegetables, bare
soils, and vineyard �elds with sub-categories as given in the following table. In Fig. 3, on the perimeter, are
images of all the classes on the day the data was taken.

Vegetables Soils and Ground Vineyards

brocoli romaine lettuce celery corn senesced fallow vineyard untrained

brocoli green weeds 1 4 wk and green weeds fallow rough plow vineyard vert trellis
brocoli green weeds 1 5 wk fallow smooth grapes untrained

6 wk stubble

7 wk soil vineyard dev.

The sub-categories of brocoli and green weeds are distinguished with 1 having smaller and fewer weeds
while 2 has taller and more weeds with both categories mostly covering the soil. The romaine lettuce is at
di�erent weeks since planting and with growth increasingly covering the soil. The fallow rough plow class
has recently been turned with larger clumps and appears more moist while the fallow class is plowed soil
with smaller clumps and the fallow smooth class has even smaller clumps. The stubble class is bare soil
with stubble. The class soil vineyard develop is mostly �nely plowed bare soil with occasional green weeds
of a few inches height and a regular array of vertical wood posts and plastic posts. The vineyard untrained
class shows untrained vines growing on wood and plastic posts with their canopy spreading out to cover
most of the soil while the vineyard vert trellis class has much greater soil visibility and much smaller grape
canopy. The two classes grapes untrained, and vineyard untrained have been treated as di�erent in the
analysis below, although after this work was completed, it was learned that these two classes were in fact
the same.

Two sub-scenes were used: (1)Salinas 98 A, B: Sub-scenes comprising 86 � 83 pixels located within the
same scene at [samples, lines] = [ 591 - 676, 158 - 240 ] which include the six classes: brocoli green weeds 1,
corn senesced green weeds, lettuce romaine 4wk, lettuce romaine 5wk, lettuce romaine 6wk,
lettuce romaine 7wk. (2) Salinas 98 C: A subset comprising 217 � 512 pixels located within the same scene
at [samples, lines] = [ 216 - 432, 1 - 512 ] which includes all 16 classes described above.
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3.3. Data Preprocessing and Post-processing

For each band at each pixel in all the scenes used, the data was rescaled from the input two byte short integer
by dividing by 10000 to make a 
oating point number in the range [0; 1]. Then the data was centered, which
means that for the scene, for each band, the mean was found and this was subtracted from all the data in
that band. This distributes the data around 0 and considerably speeds up the optimization routines.

To establish the performance of the support vector classi�er a �xed percent of all the known ground truth
was randomly chosen as the training data and used to train the classi�er. The resulting classi�er was then
applied to the whole scene at hand, but the performance was only measured on the the testing set, which
was those ground truth pixels less the training pixels. Thus the performance �gures are always on pixels the
classi�er has not seen before. This approach was repeated over several trials using di�erent random choices
of training data: �ve for the subset Indian Pines scene, one for the full Indian Pines scene, �ve for the Salinas
98 subset scenes A and B, and two for the Salinas 98 C subset scene.

4. APPLICATION OF SVM TO HYPERSPECTRAL DATA AND RESULTS

4.1. SVM Implementation

We have implemented the Support Vector Machine by incorporating software from T. Joachims (Joachims,
1998a). This code consists of a learning module that �nds the support vectors given two set of training vectors
and a speci�cation of the non-separable parameter C and the kernel function (in this work a polynomial with
parameter d), and a classi�cation module that classi�es any test vector into one of the pair of classes. We
have generalized these codes to handle multiple classes, creating K(K � 1)=2 such classi�ers in the learning
phase and then using the voting strategy after applying all these classi�ers to each test vector.

Central to the learning module is the quadratic optimization as formulated above in Eqs. (3), (4). Direct
application of quadratic optimization to large numbers of training vectors can be computationally slow, but
Joachim (Joachims, 1998b) has shown a way to reformulate the problem as a series of smaller optimization
problems. The solution of these smaller optimizations is accomplished using a quadratic optimization code
written by A. Smola (Smola, 1998).

4.2. Results for Indian Pines 92 Subset Scene

From the subset scene, a random sample of 20% of the pixels was chosen from the known ground truth
of the four classes: Corn-notill, Soybean-notill, Soybean-mintill, Grass-Trees. This was used to train six
binary classi�ers, one for each pair of classes. The trained classi�ers were then applied to the remaining 80%
of the known ground pixels in the scene, with the voting strategy above. Ties were broken by a random
choice. This procedure was repeated in �ve trials using a di�erent random seed for the selection of the 20%
of the training data. Fig. 2A shows the training data for one of the �ve trials and shows because of the
spectral overlap of the three row crops that this is a challenging classi�cation problem. Table 1 shows the
contingency table for a typical trial. For a trial, the overall performance is the sum of the number of samples
correctly labeled for each class in the test set divided by the total number of samples in the test set. Note
that Grass-Trees was classi�ed almost completely correctly as might be expected from the lack of overlap in
the training data, and the the results for the row crops is also good.

The results across the �ve trials were consistent within one percent and the average performance was 96%,
which is somewhat better than 93% from recent results of Tadjudin and Landgrebe (Tadjudin & Landgrebe,
1998a) for their best classi�er, bLOOC+DAFE+ECHO, on the same data. Table 3 summarizes the results
for the subset scene comparing the SVM classi�er, bLOOC+DAFE+ECHO, and a simple Euclidean classi�er
(Tadjudin & Landgrebe, 1998a). The Euclidean classi�er uses only the �rst order statistics of the training
data. Its poor performance is expected for this data due to the overlap of the classes. The details of the
bLOOC+DAFE+ECHO classi�er is covered in Tadjudin and Landgrebe (Tadjudin & Landgrebe, 1998a).
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Class Users Number of Corn- Soybean- Soybean- Grass-

Name Acc. Samples notill notill mintill Trees

Corn-notill 94:3 807 761 4 38 4

Soybean-notill 95:7 582 1 557 23 1

Soybean-mintill 96:1 1541 39 21 1481 0

Grass-Trees 100 586 0 0 0 586

Number Class. 3516 801 582 1542 591

Produc. Acc. 95:0 95:7 96:0 99:2

OVERALL PERF. 96.3

Table 1. A typical result for the Indian Pines subset scene. The entries in rows 2 - 5 and colums 4 - 7
are the contingency table for test-set results. Bold face numbers are correctly classi�ed samples. A perfect
result would have all zeros except on the diagonal. The overall performance is computed by the ratio of the
sum of the diagonal elements to the sum of all entries of the contingency table and appears in the lower left

4.3. E�ect of Dimension Parameter d

To test the e�ect of changing the dimension parameter d in the kernel function, Eq. (6), the �ve Indian Pines
92 Subset scenes with di�erent random choices of training vectors was tested for performance using a kernel
function with d = 1; 2; : : : ; 15 and C = 1000. The results are shown in Fig. 2B. A signi�cant increase in
performance occurs by going to a non-linear classi�er with d = 2. The �ve lines are for each of the di�erent
random choices of training vectors respectively.
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Figure 2. A. (left) Training data for classi�cation in the Indian Pines 92 subset scene. B. (right) E�ect
on classi�er performance by varying the kernel parameter d, in K(x;y) = (x � y + 1)d The �ve lines are the
results for each of the di�erent random choices of training vectors respectively

4.4. Results for Indian Pines 92 Full Scene

Results for the full scene were produced using only one trial. Here we used the sixteen ground truth classes
given in Landgrebe's data (Landgrebe, 1992). We made a random selection of 20% of the ground truth
data and tested on the remaining 80%. A di�erence with the data and results reported by Tadjudin and
Landgrebe (Tadjudin & Landgrebe, 1998a), (Tadjudin & Landgrebe, 1998b) is that they studied the scene
using 17 classes whereas we only used 16. The di�erence being that they further resolved the class Soybeans-
notill into two subclasses of Soybeans-notill based on �elds that were in di�erent locations in the full scene.
The results reported in Table 3 show the Support Vector Machine to be somewhat better at 87% as compared
to 83% for the bLOOC+DAFE+ECHO classi�er, although the di�erence in the number of classes may have
some e�ect.

4.5. Results for Salinas 98 A

Training using 10% of the ground truth and testing on the remaining 90% gave an average performance of
99:5% over �ve di�erent trials with di�erent random choice of training vectors.
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Class Users Number brocoli corn lettuce lettuce lettuce lettuce

Name Acc. of green senes. romaine romaine romaine romaine

Samples weeds 1 green weeds 4wk 5wk 6wk 7wk

brocoli green weeds 1 100:0 388 388 0 0 0 0 0

corn senes. green weeds 97:3 1330 0 1294 30 3 0 3

lettuce romaine 4wk 99:7 610 0 0 608 2 0 0

lettuce romaine 5wk 99:1 1510 0 2 11 1497 0 0

lettuce romaine 6wk 99:7 668 0 0 0 0 666 2

lettuce romaine 7wk 97:6 792 0 9 0 0 10 773

TOTAL 5298 388 1305 649 1502 676 778

Producers Acc. 100 99:2 93:7 99:7 98:5 99:3

OVERALL Perf. 98.6

Table 2. A typical result for Salinas 98 B. The contiingency table has the same meaning as in Table 1.

INDIAN PINES

METHOD PERFORMANCE

Subset Scene Full scene

Support Vector Machine 95.9% 87.3%

bLOOC+DAFE+ECHO 93.5% 82.9%

Euclidean 66.7% 48.2%

SCENE PERCENT PERFORM.

TRAINING

Indian Pines 92 Subset 20 % 95.9%

Indian Pines 92 Full 20 % 87.3%

Salinas 98 Subset A 20 % 99.5 %

Salinas 98 Subset B 1 % 98.2 %

Salinas 98 Subset C 1 % 89 %

Table 3. On the left a comparison of results for the Indian Pines subset scene. The results labeled
bLOOC+DAFE+ECHO and Euclidean are taken from the recent work of Tadjudin and Landgrebe (Tadjudin
and Landgrebe 98a, 98b). On the right the fraction of ground truth used for training and performance results
for all the scenes treated.

4.6. Results for Salinas 98 B

Training using 1% of the ground truth and testing on the remaining 99% gave an average performance of
98:2% over �ve di�erent trials with di�erent random choice of training vectors. A typical contingency table
is shown in Table 2. In particular the classi�er can readily distinguish lettuce at 4,5,6, and 7 weeks from
planting, although this primarily re
ects di�erent ratios of plant coverage to bare soil.

4.7. Results for Salinas 98 C

Training using 1% of the ground truth and testing on the remaining 99% gave an average performance of
89% over two trial with di�erent random choices of training vectors. The results of classifying the whole
image for one of these cases is shown in Fig. 3. In this �gure (as in all other trials) the performance was
measured only on the testing pixels which comprise 99 % of the pixels in the regions bounded by the black

lines. In each such region the majoirty color is the correct class. The classi�cation for the rest of the image
cannot be checked since we do not currently have ground truth for those pixels.

4.8. Summary of Performance Results

In Table 3 are assembled all the results. The comparisons with Tadjudin and Landgrebe show the Support
Vector method to be competitive with what is to our knowledge the best current results for classi�cation of
hyperspectral data. And the results for the Salinas scenes show the method to give good results even for
small training set sizes.

5. CONCLUSIONS

We have described a new approach to building a supervised learning machine called the Support Vector
Machine, and applied it to classify hyperspectral remote sensing data. The inherent high dimensionality of
this data is challenging for traditional classi�ers, due to the Hughes e�ect, and usually a feature selection
preprocessing step is performed to �rst reduce the dimensionality of the data. The Support Vector Machine

8



does not su�er from this handicap, and is thus suitable for use with hyperspectral data. The results we have
obtained show it to be competitive with other recently developed classi�ers for hyperspectral data when
applied to the same data sets and in the case of the recently acquired low altitude AVIRIS data to yield
good performance with very limited training data.

In this work the choice of kernel function is ad-hoc, as are the choices of the kernel function parameter d,
and the separability parameter, C. However, the Support Vector Machine can be placed into the Structural
Risk Minimization approach of Vapnik (Vapnik, 1995), and using rigorous bounds from recent results from
probability theory, a more rigorous approach can be taken to choosing these parameters.

Also we note that all the results we have shown are completely in the spectral domain and no aspect of
the spectral coherence of the data has been used. The results would be identical if all the classi�er bands
were permuted consistently throughout the data. And, we have not utilized the spatial coherence of the
data. We note recent studies on the classi�cation of hand written digits (Sch�olkopf et al., 1998) show that
performance gains can be made by incorporating prior knowledge into the construction of the Support Vector
Machine and we believe similar gains can be made for classifying hyperspectral data using the coherence in
the data.
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